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ABSTRACT

Scanning electron microscope images of cross sections of several porous specimens have
been digitized and analyzed using image processing techniques. The porosity and specific
surface area may be estimated directly from measured two-point spatial correlation func-
tions. The measured values of porosity and specific surface area were combined with known
values of electrical formation factors to estimate fluid permeability using one version of
the Kozeny-Carman empirical relation. For glass bead samples with measured permeabil-
ity values in the range of a few darcies, our estimates agree well (+ 10-20%) with the
measurements. For samples of Ironton-Galesville sandstone with a permeability of similar
magnitude, our results agree with the laboratory measurements well within an order of
magnitude. For Berea sandstone with much lower permeability (tens of millidarcies), our

predictions from the images are again quite good.



I. INTRODUCTION

Fluid permeability is an important physical property of porous materials with connected
void space. The rate at which a viscous fluid will flow through such a porous medium is
proportional to the pressure gradient, and the constant of proportionality is called Darcy’s
constant, or the permeability k. This constant k is probably most important for studies of
ground water flow and oil field engineering, but it also arises in medicine and in biochemical
and electrochemical engineering through various applications of permeable membranes.!
For hydrological and oil field applications, direct measurement of the permeability is both
difficult and expensive since it may require forcing a fluid through a large bulk of porous
earth. Thus, a simple and cheap indirect measurement of k, even if it is of only modest
accuracy, is highly desireable. The purpose of this paper is to present such 2 method based
on an analysis of the surface topology of porous rocks using image processing techniques.

Four principal methods of analyzing permeability have been developed in the cen-
tury following the discovery? of Darcy’s law: (1) empirical methods associated with the
names of Kozeny and Carman,® (2) effective medium methods associated with the name of
Brinkman,* (3) network modelling methods first introduced by Fatt,>~” and (4) variational

methods first introduced by Prager.5-1°

The empirical methods are generally based on very simple formulas derived using
cylindrical tube models for the pores. The empiricism enters through constant scale factors
that are chosen to fit data.’! Walsh and Brace!? recently reexamined this approach and,
in the same spirit, obtained a formula relating permeability to porosity, formation factor,
and specific surface area. They found their formula provided a good means of correlating
data on permeability and formation factor for low-porosity, low-permeability granites. We
will have more to say about this approach later in this paper.

None of the other methods for analyzing permeability seems to work as well as the
purely empirical approach. For example, Brinkman'’s effective medium approach has re-
cently been reexamined by Wilkinson,!* who found only order of magnitude agreement
between theory and experiment. Similarly, Wong et al.2¢ and Koplik et al.}* have at-
tempted to combine network models with effective medium estimates and again obtained
only order of magnitude agreement. Finally, Berryman and Milton!® reexamined the vari-
ational methods with the result that, for those cases where the needed spatial correlation
functions were available, the agreement between theory and experiment was no better than
order of magnitude in the porosity range of practical interest. Despite the sophistication
of all of these methods, the results obtained using them are quite disappointing.

The approach to be presented in this paper is a hybrid. From the variational methods,
we take the idea of measuring the statistical properties of the porous material'”® using
image processing techniques.!® Then, rather than using this information in the variational



bounds (which would only provide order of magnitude agreement), we use these results as
input to the empirical formula derived by Walsh and Brace.!? As we will show, the results
obtained in this manner are surprisingly good for the various sandstones and glass bead
samples used in the experiments.

In Section II, we define the correlation functions and show how the relevant physical
parameters are determined by them. In Section III, we present a discussion of the specific
Kozeny-Carman empirical relationship to be used in the remainder of the paper. Section
IV describes our experimental methods, and Section V our results. Section VI summarizes

our conclusions.
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. SPATIAL CORRELATION FUNCTIONS
A discussion of the significance of the spatial correlation functions has been presented

recently, together with a detailed analysis of methods for obtaining these functions exper-
imentally using image processing techniques.’®* We will not repeat the detailed discussion
here, but it is still necessary to define the correlation functions and mention their relevant
properties.

For a porous material, we define a characteristic function f(z) =0 or 1. Then, we say
that void regions have 7 = 1, while material regions have f = 0. The first three void-void

correlation functions are then given by

§1 =< f(2) >=4¢, (1)
82(F1,72) =< f(Z+ A1) f(Z+ 72) >, (2)

and
83(71,73,78) =< f(E+ ) F(E+ R) F(E+7s) > . (3)

The brackets < - > indicate a volume average over the spatial coordinate z. The void
volume fraction (or porosity) is given by ¢. We will refer to the three correlation functions
defined above as the one-, two-, and three-point correlation functions, respectively. Since
two points lie along a line and three points lie in a plane, the two-point and three-point
correlations (as well as the one-point correlation) may be measured by processing images
of material cross sections. In the present paper, we will stress the one- and two-point
correlation functions; however, the three-point correlation functions can also be obtained
from these same pictures and will be pursued in detail in a later publication. In general,
we assume that the porous medium of interest is statistically homogeneous so that on aver-
age only the differences in the coordinate values are significant (translational invariance).
Furthermore, we often assume that the material is at least locally isotropic so that the
averages do not depend on orientation of the arguments. With these assumptions, we find
that the two-point correlation function simplifies to

S:f1nFa) = S(fa - A1) =S R - ) (4

Various facts about the correlation functions are quoted in Ref. 19. The most important
ones for the present application of two-point correlation functions are, in the isotropic case

with r=| 7|,
S;(0) = ¢, (8)
lim Sy(r) = ¢%, (6)
and
853(0) = —s/4, (M



-§-

where s is the specific surface area (internal surface area per unit volume). The important
“ theorem stated in Eq. (7) concerning the relationship between the two-point correlation
function and the specific surface area has been known since the work of Debye et al.?°, and
can be derived fairly simply from its definition. To see this, consider

Salr) = & fv Ezf(2)f(2+), 0]

where V is total volume of integration. Since Eq. (8) is independent of the direction of 7,
it is convenient to average (8) over all angles according to

5al1) = g [ dodpeint [ Sapi@sia+ e (9)

where # = #(9, ¢) is the radial unit vector. Taking the derivative of S; then gives

ds: 8f(Z+rf

d;'(') “V/dpdomo/d“ (5 2LE+r) +') (10)
Defining the pore volume as V, and skipping some intermediate steps in the calculation,
we have

ds. 1 . =

—%ﬂ = W/.dpdhm”-/‘; B2V (2 + rf). (11)

Then, if da, is an infinitesimal element of the material surface area 4,, we have

"'—i’;"—) - ﬁ L da, / dipdfsin 08, f(Z, + rf), (12)

where # is the unit outward normal vector at the surface position given by #,. Now, if we
let r — 0t and center the coordinate system at Z, with A = 2, we find that

/d«pdﬂain”-h,f(i:‘. +0%f) = 2wfdﬂain0coa 8f(2, +0%F) = 2’./-0 dup = ~x (13)
-1

and we obtain a definite result for Eq. (12) given by

_dSilr) __ A
s Tdr v (14)

Since the specific surface area is defined as s = 4,/V, Eq. (14) is equivalent to Eq. (7).
Debye et al.?° used a more intuitive approach to obtain the same resuit.

Figure 1 shows two-point correlation functions calculated?!-2® for assemblages of hard
and soft spheres and emphasizes the relevant aspects of the function that will be used in

the subsequent analysis.



Oi. FLUID PERMEABILITY

Walsh and Brace!? recently used a cylindrical tube model of pore structure to derive a
formula relating permeability to porosity, formation factor, and specific surface area. These
authors found that their formula provided a good means of correlating data on permeability
and formation factor for low-porosity, low-permeability granites. Their formula has the

general form
2

kxc = tFa3’ (15)
where b is a constant that depends on the cross section of the tubes. Approximate formulas
such as Eq. (15) are well known in the study of permeability, and we will refer to all such
formulas as Kozeny-Carman relations. In version (15) of the Kozeny-Carman relation, the
electrical formation factor F (i.e., the electrical conductivity of a conducting pore fluid
divided by the effective electrical conductivity of the saturated porous insulating material)
supplies a measure of the tortuosity of the connected pore space. The remaining term
b is a weak function of the shape of the tubes in the model used to derive the formula.
Typically, b = 2 for circular tubes and b = 3 for flat cracks. In the present work, we have

used the fixed value of ¢ = 2 throughout.

Although Eq. (15) was derived under fairly restrictive assumptions concerning the
structure of the pore space, this formula has one very appealing feature that is not always
shared by other versions of the Kozeny-Carman relation: Except for the nearly constant
structure-dependent factor b, all quantities appearing in the formula have a well-defined
physical meaning and can, in principle, be measured independently of the permeability
and of each other. By contrast, approximate formulas quoted in terms of the “hydraulic
radius” must provide independent means both for defining and for measuring this quantity
in porous materials with tortuous, meandering pathways of variable cross-section.1.11,2¢

To establish a connection between the empirical formula in Eq. (15) and the variational
bounds, and to provide another motivation for using Eq. (15), we will now show how the
form of Eq. (15) can be inferred from the rigorous two-point bounds on permeability.
Berryman and Milton!® have shown that a rigorous bound on the permeability of a porous

material is given by

k< ;L’”"'('E’S),‘ #l (16)

To evaluate the integral in Eq. (16), we will make a crude approximation to the two-point
correlation function. It follows from Egs. (5)-(7) that for small r, the two-point correlation

function is given approximately by

S(r)=9¢~- f:;ar, (17)



whereas for large r, it is given by
85(r) = ¢ (18)

The straight lines defined in Egs. (17) and (18) intersect at the point

ro= M. (19)
Thus, if we extrapolate both Egs. (17) and (18) beyond their strict range of validity using
Eq. (17) for all r < r. and Eq. (18) for all r > r., then the integral in Eq. (16) may be

approximated as
./:' drr[8a(r) — ¢°] = gﬂ—’;'ﬁ-):. (20)

The resulting crude estimate of the bound on permeability is

ks 28400 (21)

For comparison, consider the limit of very high porosity (¢ — 1). In this limit, the
formation factor is known to approach unity. Using the well-known results for Stokes flow
around spherical particles, the effective permeability is then given by

2 R

where R is the radius of the spheres and the number density n is related to the porosity
by 4 nR® =1- ¢. The specific surface area is given by s = 4xnR? = 3(1 - ¢)/R, 80 (22) can

be rewritten as
k= %(1 -¢), as $—1 (23)

Thus, we see that Eqe. (21) and (23) agree in this limit within a factor of §. This agreement
is surprisingly good considering how crudely S; has been approximated. The Kozeny-
Carman relation in Eq. (15) does not perform well in this regime. At high porosity, the
formation factor approaches unity and Eq. (15) therefore diverges like (1 — ¢)-2, whereas
the exact result for spheres in Eq. (22) diverges like (1 - ¢)-? in this limit. We conclude
that Eq. (15) as written is certainly a valid approximation only for lower porosities, and
we would argue that it should not be used without modification for porosities ¢ > 0.50.

In the opposite limit of very low porosity (¢ — 0), it is known that the two-point
variational bound cannot provide a close estimate of the permeability.?* [Some positive
terms with significant values on the left hand side of (16) have been neglected in its



derivation.] To analyze Eq. (15) in the low porosity limit, we first note that a.rigorous
bound on the formation factor F is given by the Hashin-Shtrikman bound?s.2”

<2 (29)

Then, as ¢ — 0, Eq. (15) is no larger than

3
k}c = :?, (25)
while Eq. (21) reduces to
16 ¢3
k<35 (26)

We see that the functional form is the same for Egs. (25) and (26), but that they differ
by a factor of 4. Although the quantitative agreement is only order of magnitude, the

qualitative agreement between Egs. (15) and (16) is therefore quite good in this limit.

These calculations demonstrate a weak connection between the two-point variational
bound in Eq. (16) and the empirical formula in Eq. (15). We emphasize that the for-
mula in Eq. (15) is only an approximation, derived assuming that the pore space is well-
characterized by a network of tubes with simple connectedness properties. We have shown
that these assumptions are certainly violated for high-porosity materials. Nevertheless,
we have applied Eq. (15) to the porous materials considered in this paper because, even
though it is imperfect, we have found that Eq. (15) does seem to capture several of the
key features of the relationship between permeability and formation factor.



IV. EXPERIMENTAL METHODS
Digital images of the microstructure of materials used in this study were produced as fol-

lows: First, samples of the materials were vacuum-impregnated with low viscosity epoxy,
and then standard petrographic thin sections were prepared. The thin sections were un-
covered and polished with  micron diamond grit. A scanning electron microscope (SEM)
was used in backscatter mode to view the sections and to produce high contrast images
of the pore and grain structure of the sections. These images were recorded as black and
white negatives using Polariod film. Images were produced at magnifications between 20x
and 2000x. The photographic negatives (3 in. x 4 in.) were digitized using a raster scan-
ning digitizer, and the raw digital images were stored on disk as 512 x 512 arrays. This
procedure is presented schematically in Figure 2.

The raw digital images were processed using a series of digital image processing tech-
niques. First, a working image was formed by extracting a square (e.g., 400 pixel x 400
pixel) portion of the microstructure contained in the raw image and translating this area
into a 512 x 512 array, using a bilinear mapping. The true scale of this working image
(micron/pixel) was computed using the SEM scale reference bar. A histogram of the array
values for the working image was also obtained. The next step was to create an image of
zeros and ones that closely approximated the grain and pore structure of the working im-
age. This “binary” image was produced using a simple thresholding technique in which the
threshold was determined interactively by the operator, using the histogram and a video
display that afforded direct comparison of the thresholded image to the original working .
image. Once an appropriate threshold was chosen, all pixels below the threshold were
set to zero (grain) and all pixels above the threshold were set to one (pore). Computer
processing of the image is shown schematically in Figure 3. A typical raw image produced
from the SEM together with the corresponding histogram and binary image for glass beads

are shown in Figure 4.
The autocorrelation function for each binary image was calculated using an array

processor following the method described by Berryman.!® The two-point spatial correlation
function (S;) is easily found from the autocorrelation function and plotted as shown in

Figure 4(c). A line was fitted to the first few (e.g., five) points of S, and the slope of this
line was used to determine the specific surface area following Eq. (7).



V. RESULTS
Glass Bead Samples

For glass bead samples, we analyzed images with 50x and 78x magnification. The 50x
image is shown in Figure 4(a) and the resulting correlation function is shown in Figure
4(d). Note that the shape of the function is very similar to the theoretical function for
the hard sphere model plotted in Figure 1. From the correlation function for both the 50x
and 78x images, we estimate a mean sphere radius for the material of 65 -~ 70 microns.
This estimate agrees semiquantitatively with measurements of the largest spheres made
on the raw images. Thus, for the glass bead material, the correlation behaves as expected,
indicating that the technique is producing appropriate results. From the two correlation
functions, we estimated porosities of 35 and 43% for this material, which is somewhat
higher than the value of 30% supplied by the manufacturer. The specific surface area
was estimated to be 0.0241 and 0.0281 micron. These values were determined from the
slope of the correlation function near zero, as shown in Figure 4(d). Using these values for
porosity and specific surface area and Eq. (15) with b = 2, we predict the permeability of
this material to be 9.7 - 10.7 darcy, which is very close to the laboratory value of 8.7 darcy
supplied by the manuacturer. The above data are summarized in Table 1.

Ironton-Galesville Sandstone

The second material we applied this method to was Ironton-Galesville sandstone®®.
This is a friable, medium-grained quartz sand with weak dolomitic cement. The two sam-
ples studied contained some clay-rich zones and shale interbeds. We analyzed a series of
images with magnifications of 20x - 100x and typical images of areas with and without
clay in the pore space are shown in Figures 5(a) and 6(a). Two-point correlation functions
for these two images are presented in Figures 5(b) and 6(b). Note that, for the regions
without much clay in the pore space, the correlation functions resemble the hard-sphere
model; for regions with significant clay in the pore space, the correlation functions resemble
a soft-sphere model. Particle size for each image was estimated from the corresponding
correlation function, and (as for the glass beads) this estimate appears to be a semiquanti-
tative measure of the size of the largest grains in the image. For images of sample IG-775
and 1G-785, we measured porosities of 32 - 43% and 26 - 33% respectively. Unfortunately,
laboratory porosity data are unavailable for these samples. Specific surface area was also
estimated for these samples and values range from 0.0322 to 0.0924 micron (Table 1).
As discussed above, we computed a permeability for each image using the corresponding
porosity and specific surface area values. For these samples, the permeability estimates
for 100x images show the best agreement with laboratory values. For sample 1G-775, our
estimated permeability is about a factor of 4.5 too high, except for one image of a clay-rich
region (Figure 6). The estimated permeability for this image is only a factor of 1.5 too high,
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and note that the specific surface area for this image is much higher than that measured
for other regions. This apparent discrepancy is due to-the large amount of fine-grained
(clay) material in the image, and is consistent with the general observation that clay rich
regions have lower permeability. Moreover, it is interesting to note that the worst estimate
(7.7 darcy from image IG-775-x20) is still only an order of magnitude greater than the
laboratory data. For comparison, note that order of magnitude agreement is typical for
the currently available variational bounds as well as for other estimation methods.

Berea Sandstone

We also analyzed thin sections of Berea sandstone that were made from a sample
which had been characterized in the laboratory by Daily and Lin.?® They report that
this Berea sandstone is 97% quartz, 2% potassium feldspar, and 1% other minerals. This
is a well-cemented and well-sorted sandstone. For this sample, we studied images with
magnifications of 50x, 100x, 200x, 490x, and 1000x. Typical images at 100x magnification
are shown in Figures 7 and 8, along with their respective correlation functions. Note that,
as with the Ironton-Galesville sandstone, the regions with clay in the pores produced
correlation functions resembling the soft-sphere model, whereas the regions with little or
no clay or other pore filling material produced correlation functions resembling the hard-
sphere model. Daily and Lin report a porosity of 16-18% for this sample, and our estimates
of porosity from images at 50x to 200x all fall within this range. Our estimate of particle
size was also very consistent for these images, indicating that the largest particle size was in
the range of 150 - 170 microns, again in semiquantitative agreement with observed particle

size.

We estimated the specific surface area for the Berea sample from images with mag-
nifications of 490x and 1000x; the image at 490x is shown in Figure 9, along with the
correlation function. The formation factor quoted in Table 1 for Berea is taken from a
table in Dullien.! The 1000x image and its correlation function are shown in Figure 10(a)
and (b). Note the distinct break in slope that occurs at lags of less than 3 microns in both
Figures 9(b) and 10(b). This break indicates that features along grain boundaries are in
this size range, and that they control the specific surface area. Similar values of s were
predicted using both 490x and 1000x images, which were much higher than the values
predicted using 100x and 200x images. Also note the linear decrease in the correlation
function that occurs in the range of 2-12 microns at both 490x and 1000x magnification.
This range of sizes coincides with that of the pore throats seen in each image and could
be a useful measure of throat size. To predict permeability for this rock, we used the
porosity value determined from the images at 50x - 200x and the specific surface area
determined from images at 490x and 1000x. Our estimates of 16 and 18 mD are quite
close to Daily and Lin’s laboratory measurement of 23 mD. This result shows surprisingly
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good agreement between the predictions and the laboratory measurements.

VI. CONCLUSIONS

In summary, we have used digital image analysis to calculate the two-point correlation
functions and to estimate porosity and specific surface area for three very different porous
materials. Porosity of the samples was determined from the images and these data were
compared with porosity values previously determined in the laboratory. We found that
porosity measured from images of 50x - 200x agreed well with laboratory values. However,
images of this magnification were not adequate to compute specific surface area, because
features smaller than a few microns were poorly resolved in the digitized images. (Table 1
shows that, as magnification is increased, the measured value of the specific surface area
also tends to increase. To obtain information about features smaller than a few microns,
images with the higher magnifications have to be studied.) For the present application,
the glass bead samples were nearly ideal: The SEM images for glass were relatively easy to
interpret, so the choice of threshold to produce the final binary image was not complicated.
Furthermore, the range of particle sizes was narrow for the glass beads, so a single choice
of magnification for the images (around 100x) proved adequate for all of the analyses.

By contrast, it was necessary to use several different magnifications for the sandstones,
because the particle size distribution was quite broad. We found that for the Berea sand-
stone studied, magnification of 500x - 1000x produced consistent measurements of specific
surface area. Our estimates of porosity agreed well with available laboratory measurements
and, more importantly, our estimates of permeability (calculated using a Kozeny-Carman
relation) also agreed well with measured values. Finally, we noticed that, for the sand-
stone samples, the amount of pore-filling material (such as clay) influenced the shape of
the correlation function; it may therefore be possible to estimate other useful parameters
such as mean pore throat size and mean particle size from the correlation function.

Although the results in the present paper are encouraging, we need to mention again
the fact that laboratory data on the formation factor and specific surface area for the
samples studied are sparse or lacking. In principle, the formation factor can be estimated
from the SEM images in a manner analogous to that presented here by obtaining the three-
point correlation function [Eq.(3)] of the sample surfaces and then using it to calculate the
known variational bounds for electrical conductivity.!” This approach will be explored in

detail in the second paper of this series.

Finally, it seems remarkable that an approximate formula like Eq. (15) should provide
such good agreement with experiments over such a wide range of permeability. Walsh
and Brace!? showed that it worked well for granites with permeabilities in the nD range.
The present study shows that it also works well for high-permeability sandstones. It is
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therefore tempting to speculate that some deeper significance might be established for
this particular Kozeny-Carman relation (or a slightly modified version of it) by studying
rigorous relationships between k and F.



-14-
ACKNOWLEDGEMENTS

We thank B. P. Bonner for supplying the glass bead specimens used in this work
and also for his measurements of the formation factors for these samples; W. D. Daily
and W. Lin for supplying specimens of the Berea sandstone used in their experiments;
J. M. Beiriger for able technical assistance in obtaining and processing SEM images. Work
performed under the auspices of the U. S. Department of Energy by the Lawrence Liver-
more National Laboratory under contract No. W-7405-ENG-48 and supported specifically
by the Institutional Research and Development Program within the Earth Sciences De-

partment.



© ® N & o a

10.
11.

12.
13.
14.
15.
16.
17.

18.
19.
20.
21.

22

-15 -
REFERENCES

F. A. L. Dullien, Porous Media - Fluid Transport and Pore Structure ( Academic Press,
New York, 1979), pp. 159-161.

H. Darcy, Les fontaines publique de la ville de Dijon, Paris, 1856.

P. C. Carman, Flow of Gases through Porous Media (Academic Press, New York,
1979), Sect. 8.2.

H. C. Brinkman, Appl. Sci. Res. A 1, 27 (1947).

I. Fatt, Trans. AIME 207, 144 (1956).

L. Fatt, Trans. AIME 207, 160 (1956).

I. Fatt, Trans. AIME 207, 164 (1956).

S. Prager, Phys. Fluids 4, 1477 (1961).

H. L. Weissberg and S. Prager, Phys. Fluids 5, 1390 (1962).

H. L. Weissberg and S. Prager, Phys. Fluids 18, 2958 (1970).

J. R. Schopper, in Physical Properties of Rocks, Vol. a, edited by G. Angenheister
(Springer-Verlag, Berlin, 1982), pp. 278-303.

J. B. Walsh and W. F. Brace, J. Geophys. Res. 89, 9425 (1984).

D. Wilkinson, Phys. Fluids 28, 1015 (1985).

P. Wong, J. Koplik, and J. P. Tomanic, Phys. Rev. B 30, 6606 (1984).

J. Koplik, C. Lin, and M. Vermette, J. Appl. Phys. 56, 3127 (1984).

J. G. Berryman and G. W. Milton, J. Chem Phys. 883, 754 (1985).

M. J. Beran, Statistical Continuum Theories (Interscience, New York, 1968), Chapt.
6.

P. B. Corson, J. Appl. Phys. 45, 3159 (1974).

J. G. Berryman, J. Appl. Phys. 57, 2374 (1985).

P. Debye, H. R. Anderson, Jr., and H. Brumberger, J. Appl. Phys. 28, 679 (1957).
S. Torquato, Ph.D. Thesis (State University of New York at Stony Brook, 1980),
unpublished.

J. G. Berryman, J. Comput. Phys. 52, 142 (1983).



23
24
25

26.
27.
28.

29

~16 -
. 8. Torquato and G. Stell, J. Chem. Phys. 82, 980 (1985).
. M. S. Paterson, Mech. Mater. 2, 345 (1983).

. J. G. Berryman, in Proceedings of the Workshop on Homogenization and Effective
Moduli of Materials and Media, Institute for Mathematics and Its Applications, Uni-
versity of Minnesota, Minneapolis, MN, October 22-26, 1984, (Springer-Verlag, Berlin,

1986), in press.
Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 11, 127 (1963).

J. G. Berryman, Phys. Rev. B 27, 7789 (1983).

S. C. Blair, in Proceedings of ENERSTOK ’85, International Conference on Energy
Storage for Building Heating-Cooling, Toronto, Canada, Sept. 22-26, 1985 (Public

Works, Canada, Ottawa, Canada).
. W. D. Daily and W. Lin, Geophysics 50, 775 (1985).



-17-

Table 1. Comparison of porosity and permeability values produced in this study with
those obtained from laboratory measurements. The formula used for the permeability
value obtained from the image in all cases was kxc = ¢°/2Fs?. Formation factor values
quoted in parentheses were estimated, not measured.

Number Specific Porosity Permeability Formation
Sample  Magnification of surface é k(D) factor
images area F

s(um~1) Image Laboratory Image Laboratory

Glass 50 1 0.0241 0.35 - 0.30 0.7 8.7 109
beads '

(55 pm) 78 1 0.0281 0.43 030 10.7 8.7 10.9
Ironton

Galesville

sandstone

IG-775 20 1 0.0322 0.40 - 7 0.75° (10)
1G-775 50 1 0.0449 0.85 - 3.1 0.75° (10)
1G-775 100 3 0.0609 0.39 - 2.1 0.75° (10)
1G-785 100 3 0.04556 0.30 - 2.2 1.00° (10)
Berea 100 2 0.0281 0.17 0.15-0.18°> 0.312 0.023% 62°
Berea 200 1 0.0354 0.18 0.15-0.18%* 0.197 0.023° 62°
Berea 490 1 0.1167 0.224  0.15-0.18* 0.018 0.023° 62°
Berea 1000 1 0.1231 0.393  0.15-0.18° 0.016 0.023° 62°

SRef. 28, PRef. 29, “Ref. 1
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Figure Captions

Figure 1. Two-point correlation functions for model materials composed of hard and
soft spheres (modified from Ref. 21 with the author’s permission). Quantities that can
be determined directly from the shape of the two-point correlation functions include: (1)

porosity, (2) specific surface area, and (3) mean particle size.
Figure 2. Schematic of image production methodology.

Figure 3. Schematic of digital image processing technique used to produce two-point
correlation functions.

Figure 4. Glass bead example: (a) raw image, (b) histogram, (c) binary image, and
(d) two-point correlation function. In 4(d), the dashed line is the least squares fit to the
average value of S;; the solid line is the average value of S,; the other two curves (dot-
dash and long-dash) are individual measurements of S, in two orthogonal directions which
provide a measure of the anisotropy of the sample.

Figure 5. Ironton-Galesville sandstone IG-785 (without much clay): (a) SEM image
and (b) two-point correlation function. In 5(b), the solid line is the measured average value
of S;; the dashed line is the analytical value of S, for a penetrable sphere model with the
same porosity and specific surface area.

Figure 6. Ironton-Galesville sandstone IG-775 (with fine-grained material in the pores):
(a) SEM image and (b) two-point correlation function. In 6(b), the solid and dashed lines
have the same significance as in 5(b). '

Figure 7. Berea sandstone (without substantial clay): (a) SEM image and (b) two-
point correlation function. In 7(b), the solid and dashed lines have the same significance
as in 5(b).

Figure 8. Berea sandstone (some pores filled with clay or fine-grained material): (a)
SEM image and (b) two-point correlation function. In 8(b), the solid and dashed lines
have the same significance as in 5(b).

Figure 9. Berea sandstone at 490x magnification: (a) SEM image and (b) two-point
correlation function. In 9(b), the dashed line is the least squares fit to the average value

of S, and the solid line is the average value of ;.

Figure 10. Berea sandstone at 1000x magnification: (2) SEM image showing grain
edges and (b) two-point correlation function. In 10(b), the solid and dashed lines have the

same significance as in 9(b).



2 point correlation function for impenetrable and fully
penetrable spheres ’

0.40 SEE— l T
¢ .
0.35 | —— impenetrable spheres _| -
. mme—- fully penetrable spheres
\
0.30 —\ _
— porosity ¢ = 0.38
X 0.25 , S specific surface _
@ S; (0)=-7 area s
020 \
\ ¥
0.15 b—t
\ estimate of particle size
" 0.10 | | | |
0 1.0 2.0 3.0 4.0 5.0

Sphere Radius (r)



F.'-{) vre &

Standard epoxy impregnated thin sections produced
from sandstone and glass bead samples.

(P roscsmse (BT Sortra

thin section

High contrast images of pore structure produced
on scanning electron microscope (SEM). The
SEM was used in backscatter mode and the
images were recorded as photographic negatives.

SEM analysis

~

The raw- images were digitized using an Eikonix
scanning digitizer and stored on disk as

digital arrays.
Ej Elkonix scanning Digital image file
1___ digitizer on disk
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